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Implementations of quantum logic:
fundamental and experimental limits

By S. Bose, P. L. Knight, M. Murao, M. B. Plenio and V. Vedral

Optics Department, The Blackett Laboratory, Imperial College of Science,
Technology and Medicine, London SW7 2BZ, UK

Quantum information processing rests on our ability to manipulate quantum super-
positions through coherent unitary transformations. In reality the quantum informa-
tion processor (a linear ion trap, or cavity QED implementation for example) exists
in a dissipative environment. Dephasing, and other technical sources of noise, as
well as more fundamental sources of dissipation severely restrict quantum processing
capabilities. The strength of the coherent coupling needed to implement quantum
logic is not always independent of dissipation. The limitations these dissipative influ-
ences present will be described and the need for efficient error correction noted. Even
if long and involved quantum computations turn out to be hard to realize, one can
perform interesting manipulations of entanglement involving only a few gates and
qubits, of which we give examples. Quantum communication also involves manipula-
tions of entanglement which are simpler to implement than elaborate computations.
We briefly analyse the notion of the capacity of a quantum communication channel.

Keywords: quantum computation; decoherence;
entanglement; quantum communication

1. Introduction

Since Shor’s discovery (Shor 1994; Ekert & Jozsa 1996) of an algorithm that allows
the factorization of a large number by a quantum computer in polynomial time
instead of in exponential time as in classical computing, interest in the practical
realization of a quantum computer has been much enhanced. Recent advances in the
preparation and manipulation of single ions as well as the engineering of preselected
cavity light fields suggest that quantum optics may well be the field of physics that
promises the first experimental realization of a quantum computer.

The realization of a quantum computer in a linear trap (Cirac & Zoller 1995)
has been regarded as very promising as it was thought that decoherence could be
suppressed sufficiently to preserve the superpositions necessary for quantum com-
putation. Indeed, a single quantum gate in such an ion trap has been realized by
Monroe et al . (1995). Nevertheless, the error rate in this experiment was too high
to allow the realization of extended quantum networks. This experiment was limited
by technical difficulties and one aim of future experiments is to reduce these to come
closer to the fundamental limits, such that at least small networks can be realized.
However, there remains the question of whether overcoming technical problems will
be sufficient to realize practically useful computations such as factorization of big
numbers on a quantum computer in a linear ion trap. Here we address the prob-
lem of the so-called threshold accuracy in quantum computation (Knill et al . 1996;
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1824 S. Bose and others

Aharonov & Ben-Or 1996). This threshold implies that arbitrarily complicated (long)
quantum computations can be performed once the error rate of a quantum gate can
be pushed below a certain threshold. We will discuss whether the required thresh-
olds (Knill et al . 1996; Aharonov & Ben-Or 1996) can be achieved or if spontaneous
emission rules out this possibility (not to mention other error sources). We present
a simple calculation to understand the order of magnitude of these thresholds and
then calculate the spontaneous emission rate in one quantum gate. Even if long and
involved quantum computations turn out to be hard to realize, one can perform some
interesting manipulations of entanglement involving only a few gates and qubits, of
which we give some examples. Quantum communication also involves manipulations
of entanglement which are simpler to implement than elaborate computations. We
briefly analyse the notion of the capacity of a quantum communication channel.

2. Elementary quantum gates, algorithms and implementation

A quantum computer is a physical machine that can accept input states which
represent a coherent superposition of many different possible inputs and subse-
quently evolve them into a corresponding superposition of outputs. Computation,
i.e. a sequence of unitary transformations, affects simultaneously each element of the
superposition, generating a massive parallel data processing capability albeit within
one piece of quantum hardware (Deutsch 1985). This way quantum computers can
efficiently solve some problems which are believed to be intractable on any classical
computer (Deutsch 1992; Shor 1994). Apart from changing the complexity classes,
the quantum theory of computation reveals the fundamental connections between
the laws of physics and the nature of computation and mathematics (Deutsch 1997).

For the purpose of this paper a quantum computer will be viewed as a quantum
network (or a family of quantum networks) composed of quantum logic gates; each
gate performing an elementary unitary operation on one, two or more two-state
quantum systems called qubits (Deutsch 1989). Each qubit represents an elementary
unit of information; it has a chosen ‘computational’ basis {|0〉, |1〉} corresponding to
the classical bit values 0 and 1. Boolean operations which map sequences of 0s and
1s into another sequences of 0s and 1s are defined with respect to this computational
basis.

Any unitary operation is reversible and that is why quantum networks effecting
elementary arithmetic operations such as addition, multiplication and exponentiation
cannot be directly deduced from their classical Boolean counterparts (classical logic
gates such as AND or OR are clearly irreversible: reading 1 at the output of the
OR gate does not provide enough information to determine the input, which could
be either (0, 1), (1, 0) or (1, 1)). Quantum arithmetic must be built from reversible
logical components. It has been shown that reversible networks (a prerequisite for
quantum computation) require some additional memory for storing intermediate
results (Bennett 1989). Hence the art of building quantum networks is often reduced
to minimizing this auxiliary memory or to optimizing the trade-off between the
auxiliary memory and a number of computational steps required to complete a given
operation in a reversible way.

Three elementary gates used in the construction of more complicated quantum
networks (the NOT gate (which is obviously reversible), controlled-Not (C-NOT)
gate and the Toffoli gate) are shown in figure 1.
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Implementations of quantum logic 1825

Figure 1. Elementary gates: (a) NOT gate; (b) C-NOT; (c) Toffoli gate.

By basic quantum gates we mean any set of quantum gates which can perform
any desired quantum computation. A universal quantum gate is the one whose com-
bination can be used to simulate any other quantum gate. A number of quantum
algorithms have been developed (see elsewhere in this issue) from Deutsch’s ora-
cle algorithm to Shor’s factorization algorithm and Grover’s search algorithm. All
may be realized, in principle, by using networks made up from one-bit rotations
and C-NOT gates. The Shor algorithm for factorization uses Euclid’s method and
periodicity to find the factors of the given numberN . This requires addition, multipli-
cation and exponentiation networks and Fourier transformation (Vedral et al . 1996).
The Grover search algorithm solves the problem of finding a special entry within a
database of length N . Classically we need 1

2N tries, but a quantum computer can
find the entry in

√
N tries (Grover 1997).

We will not provide an exhaustive review of all possible implementations of quan-
tum logic gates here. Many have been proposed, from coupled quantum dots, NMR
spins, laser-cooled ions coupled through their centre of mass motion, to cavity QED
in which atomic superpositions become entangled with quantized single-mode cavity
fields. Quantum gate operation has been demonstrated experimentally for some of
these, and we will concentrate in what follows on the special case of the linear ion-
trap gate. This involves cooling ions to the lowest quantized state of motion within a
trapping potential and then entangling internal and motional degrees of freedom of
the trapped ions. Meekhof et al . (1996) have shown how a number of non-classical
motional states of a Be+ ion may be realized; their experiments reveal that they are
limited to some extent by dephasing decoherence. Nevertheless, the same trap has
been used to realize a C-NOT gate (Monroe et al . 1995). In what follows, we discuss
the problem of decoherence in such a realization.

3. Decoherence problems

The ion-trap C-NOT gate involves cooling ions to their lowest vibrational state within
the trap potential. Then single-photon (or two-photon Raman transitions) can excite
internal electronic transitions within the ion; a suitable choice of detuning can simul-
taneously create (or annihilate) vibrational quanta. Meekhof et al . (1996) showed in
particular how Fock states of motion can be realized by a clever choice of laser
pulses and detunings. Were there to be no sources of decoherence, the trapped-ion
dynamics should reflect the Jaynes–Cummings interaction of internal and vibrational
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degrees of freedom (Shore & Knight 1993). For a Fock state, this would be a pure
sinusoidal Rabi oscillation. What was observed (Meekhof et al . 1996) was a damped
Rabi oscillation of the form

P↓(t) = 1
2

{
1 +

∑
n

pn cos (Bnt)e−Ant
}
, (3.1)

where P↓(t) is the probability of being in the |↓〉 internal ion state, pn is the initial
vibrational quantum number probability distribution, Bn is the coherent effective
Rabi frequency and An is a phenomenologically introduced decoherence rate. These
are substantially larger than expected, and are observed to be n-dependent as An =
γ0(1 +n)0.7. Possible sources of this decoherence include imperfect phase correlation
for the field driving the Raman excitations and heating of the motional states. In
what follows, we show how such decoherence affects the qubit-vibrational Jaynes–
Cummings dynamics.

In the Lamb–Dicke limit of closely confined ion motion, the effective Hamiltonian
for the trapped-ion experiment (Meekhof et al . 1996) in the interaction picture is
given by the (anti)-Jaynes–Cummings Hamiltonian,

HI
eff = ~g(a†S+ + aS−), (3.2)

where a, a† are boson operators for the motional states (|n〉m), and S+, S− are spin
operations for the two relevant internal atomic levels (|↓〉a and |↑〉a). The Jaynes–
Cummings Hamiltonian (3.2) is the origin of the characteristic quantum dynamics of
the system. In this section, we introduce phenomenologically new sources of decoher-
ence in the interaction picture, which destroy this characteristic Jaynes–Cummings
dynamics without energy relaxation (Murao & Knight 1998). We formulate the effects
of decoherence by using a master equation describing the coupling of the internal
and vibrational states to a quantum reservoir. In the high-temperature limit of the
reservoir, within Markovian approximation, the master equation coincides with that
for stochastic white noise. The advantage of using this quantum reservoir is that it
not only describes quantum noise, but also provides a microscopic understanding of
decoherence.

The effects of an environment coupled to the Jaynes–Cummings system are treated
by coupling a quantum reservoir, which consists of an infinite number of bosons in a
canonical distribution at temperature T for each mode. The choice of the coupling
between the system operators and the reservoir operators determine the effect of the
reservoir. If we choose the system operators that do not change the bosonic quan-
tum number when they operate on the dressed states, the resulting master equation
describes relaxation within the dressed states indicated by the bosonic quantum num-
ber n, but not energy relaxation between states with different n. The operators, Sz,
a†, a, are obviously of this type, as these operators do not even change the motional
states |n〉m as well as the dressed-state label n. The operator a†S+ + aS− changes
the motional state, but this operator does not change the dressed-state indication n,
so a†S+ + aS− is also of this type.

We consider in the following two possible alternatives for system–reservoir coupling
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as potential candidates for the source of ‘decoherence without energy relaxation’:

Hsr = ~(a†S+ + aS−)
∑
l

g′l(B
†
l +Bl), (3.3)

H ′sr = ~a†a
∑
l

g′l(B
†
l +Bl), (3.4)

where ωl is the lth reservoir frequency, and B†l and Bl are the creation and annihila-
tion operators of the reservoir bosons. The coupling (3.3) describes imperfect dipole
transitions between the level |0〉a (the intermediate state for the Raman transitions)
and the level |j〉a (j = ↑, ↓) due to fluctuations of the driving laser intensity. The
coupling (3.4) describes fluctuations of the trap potential.

Then the master equation for the reduced-system operator in the interaction
picture ρI(t) due to the system–reservoir coupling is obtained by using a time
convolution-less (TCL) formalism (Shibata & Arimitsu 1980) and the rotating wave
approximation on the master equation (Murao 1997),

∂

∂t
ρI(t) =

1
i~

[HI
eff , ρ

I(t)] + ΓρI(t), (3.5)

with the damping term ΓρI(t) given by (Murao & Shibata 1995)

ΓρI(t) =
∑
l

g′2l

∫ t

0
dt′{(〈B†l (t′)Bl〉B + 〈Bl(t′)B†l 〉B)

× ([Cs(−t′)ρI(t), C†s ] + [C†s (−t′)ρI(t), Cs])

+ (〈B†l (−t′)Bl〉B + 〈Bl(−t′)B†l 〉B)

× ([Cs, ρ
I(t)C†s (−t′)] + [C†s , ρ

I(t)Cs(−t′)])}, (3.6)

where Cs represents the system operators a†S+ and a†a, which couple to the reser-
voir. Time evolution of the system operators are determined by (3.2).

The master equation (3.5) can be solved by expanding all system operators in
terms of the dressed states, which are eigenstates of the effective Hamiltonian (3.2),
under certain reservoir conditions (Murao 1997). We take the continuum limit of the
reservoir modes. We also require the time-scale of the reservoir variables to be much
shorter than the system variables so we can take the Markovian limit. If we assume
an initial condition of a product state |↓〉a〈↓| ⊗

∑
n pn|n〉m〈n|, the population of the

lower atomic state, given by

P↓(t) = 1
2

{
1 +

∑
n

pn cos (Bnt)e−Ant
}
, (3.7)

is obtained from the analytical solution of an off-diagonal element of the density
matrix in the dressed-state basis ρnn12 (t) = e(−An±iBn)tρnn12 (0). The damping rate
An is

An = (n+ 1)κ(n){n̂(n) + 1
2} ≡ Adi

n , (3.8)

An = 1
2κ(n){n̂(n) + 1

2} ≡ Avi
n , (3.9)

for the imperfect dipole transition case (3.8), and for the fluctuation of the vibrational
potential case (3.9), where n̄(n) is the mean reservoir boson number given by

n̂(n) = (e2~g
√
n+1/kBT − 1)−1,
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Figure 2. The population of the lower atomic state P↓(t) with the initial state being the product
of |↓〉a for the atomic state and a coherent state |3.0〉m for the motional state. The dashed line
is for no decoherence and the solid line is for the case of imperfect dipole transition with the
coefficients d = 0.4 and γ̃0 = 0.127, which corresponds to the experiment of Meekhof et al .
(1996).

and κ(n) is assumed to be given:

κ(n) ≈ (2~g
√
n+ 1)d.

The effects of the zero-frequency reservoir bosons are neglected. The coherent part
Bn is given by

Bn =
√

4g2(n+ 1)−A2
n.

The results for the decoherence rates Adi
n (3.8) and Avi

n (3.9) show that decoher-
ence originates in the relaxation of density matrix elements that are diagonal in
the boson quantum number but off-diagonal in the spin quantum numbers in the
dressed-state basis. This relaxation is caused by the coupling to reservoir bosons at
frequencies of 2g

√
n+ 1. The effective contribution of reservoir bosons at frequencies

of 2g
√
n+ 1 is a key to understanding the decoherence rate. The Rabi frequency g in

the experiment (Meekhof et al . 1996) is around 100 kHz, so reservoir bosons of order
100 kHz may be responsible for decoherence. These reservoir bosons have much lower
frequencies than those responsible for spontaneous emission of atomic states, which
are of the order of GHz, and also population decay of motional states, which are of
the order 10 MHz. This low-frequency nature of the reservoir boson suggests that the
reservoir has a high-temperature nature, whereas in the optical frequency regime, the
corresponding reservoir is often approximated at zero temperature. Thus we can have
the high-temperature limit. This limit represents the classical noise where the reser-
voir operators commute. Introducing normalized values, Ãdi

n = Adi
n /g, Ãvi

n = Avi
n /g,

γ̃0 = γ0/g, κ̃(n) = κ(n)/g, the normalized decoherence rates are

Ãdi
n = γ̃0(n+ 1)(d+1)/2, (3.10)

Ãvi
n = γ̃0(n+ 1)(d−1)/2. (3.11)

To get an exponent of 0.7 for the factor (n+1) suggested by the experiment (Meekhof
et al . 1996), we need d ≈ 0.4 for the imperfect dipole transition case and d ≈ 2.4 for
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Figure 3. A two-level system storing a quantum bit.

the case of fluctuations of the vibrational potential. Figure 2 illustrates the effect of
such decoherence on ion state populations.

The sources of decoherence so far considered derive from instrumental imperfec-
tions which are likely to improve in the future. If we imagine they can be entirely
overcome, only fundamental sources of decoherence such as spontaneous emission
would remain. We now examine the consequences for quantum computation of this
kind of decoherence (Plenio & Knight 1996, 1997). Spontaneous decay would termi-
nate the coherent superposition necessary for quantum computation.

An elementary time-step (a coherent gate operation) takes the time τel and factor-
ization of an L-bit number requires of the order of εL3 elementary time-steps where
ε is of order 400. This results in a total computation time T of

T ∼ ετelL
3. (3.12)

The decoherence time of a single qubit is τdec and the decoherence time for 5L + 2
(this number is required for factorization) qubits is

τdec = τqb/5L. (3.13)

To prevent spontaneous emission during the computation we need τqb � 5ετelL
4.

However, the larger the decoherence time τqb, the longer is the elementary time-step
τel (Plenio & Knight 1996)!

If we use a two-level system as a qubit, as shown in figure 3, then the coherent gate
operation is determined by the coherent Rabi frequency Ω12 But the Rabi frequency
Ω12 and the spontaneous emission decay rate Γ22 are not independent. We have

Ω2
12

Γ22
=

6πc3ε0
~ω3

12
E2, (3.14)

where E is the electric field strength of the laser (Plenio & Knight 1996, 1997). An
upper limit for E is the tunnelling ionization field strength, which for hydrogen has
the value E ∼= 5.8× 1011 V m−1.

In the implementation of a C-NOT in an ion trap, the COM mode has to be
excited and de-excited twice. This requires a full 4π rotation with the Hamiltonian

H =
η√
5L

1
2Ω12[|e〉〈g|a+ |g〉〈e|a†], (3.15)
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Table 1. Factorization limits

L T � Γ �

4 6.4× 10−3 s 77× 10−2 s−1

40 6.4× 105 s 77× 10−11 s−1

where η is the Lamb–Dicke parameter, and a, a† are the vibrational annihilation and
creation operators. One needs εL3 elementary steps τel so that

T ≈ 4π
√

5L
ηΩ12

εL3. (3.16)

To have no spontaneous emission during the calculation we require

1
5LΓ22

= τdec � T =
4πε
Ω12

√
5L7

η2 . (3.17)

Using equation (3.14) this leads to

1
Γ22
� 2000π2ε2

η2

Γ22

Ω2
12
L9. (3.18)

For the total computation time we obtain

T � 400π2
(
ε

η

)2
Γ22

Ω2
12
L8. (3.19)

Some values for T assuming η = 1, Ω2/Γ = 1016 s1/2 and ε = 500 are shown in
table 1.

For example, to factorize the 23-digit number

41 141 158 551 285 430 224 619 = 34 802 904 313× 1 182 118 543 363 (3.20)

on a quantum computer one needs about

1.4× 108 s ≈ 3.6 years. (3.21)

Mathematica does it in 25 s on a workstation! Some of us have shown elsewhere
how breakdown of the two-state model for the qubit imposes even more stringent
restrictions on quantum computation (Plenio & Knight 1997).

These considerations showed the need to use quantum error correction methods
to stabilize the system against noise. However, quantum error correction methods
are implemented as short quantum computations themselves and suffer from errors.
To avoid this problem the new idea of fault-tolerant quantum computation (Shor
1994, 1995) was introduced. The idea is to encode the qubits in such a way that the
encoding does not introduce more errors than previously were present. If the error
stays at the same level we then keep performing error correction until the error has
decreased in magnitude (Shor 1996; DiVincenzo & Shor 1996; Plenio et al . 1997).
The present state of the art requires 5–10 qubits to encode a single qubit against a
single error. It is the iterative application ‘in depth’ of the encoding that will enable
us to reduce error to an arbitrarily small level providing it is below a certain level to
start with. In other words we will be encoding the encoding bits.
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We have seen above how to estimate the accuracy threshold for quantum compu-
tation with a simple argument and we have given elsewhere (Plenio & Knight 1997)
the numbers that arise from more precise explicit constructions of error correction
schemes. We have seen that the incoherent error rate per quantum gate should not be
higher than around 10−6. In a more detailed analysis (Knill et al . 1996) it was shown
that the execution of one quantum gate on an encoded qubit requires in the order
of N = 106 operations, which confirms the qualitative estimates given by arguments
of the kind given above. We will now see whether accuracies of that order can be
achieved in a linear ion-trap realization of the quantum computer by using Zeeman
sublevels as qubits in the chosen ions. We emphasize that we take into account only
the spontaneous emission of the ions and assume that all the other errors have been
eliminated.

We calculate the probability of suffering at least one spontaneous emission during
the implementation of N quantum gates. This probability has to be smaller than
unity. We represent the qubit by two Zeeman sublevels and use Raman pulses to
transfer population between the two states. For the time required to perform N
quantum gates we find T = N8π∆2/Ω

2
02. From that we obtain the probability for

a spontaneous emission from level two as p2 = 8πΓ22N/∆2. Again we have to take
into account the fact that the two-level approximation can break down. This leads to
an additional independent source of spontaneous emission via extraneous levels. One
finally obtains the probability of having a spontaneous emission from an extraneous
level:

p3 =
80Γ 2

33π
2N2L

∆2
13βη

2

(
ω12

ω13

)3

. (3.22)

The total probability of a spontaneous emission is ptot = p2 + p3 and therefore the
error rate per quantum gate is

r =
ptot

N
=

√
320L
β

πΓ33

∆13η

(
ω12

ω13

)3/2

. (3.23)

We use the data for the ions given in (Plenio & Knight 1997). If we assume η = 1,
β = 1 (Knill et al . 1996), L = 7 and an optimistic N = 106 we see that even for
barium the probability for at least one emission is almost unity. The explicit values
are: for barium, r = 0.44 × 10−6; for mercury, r = 9.26 × 10−6; and for calcium,
r = 2.03 × 10−6. This means that unless the encoding procedures given in Knill
et al . (1996) and Aharonov & Ben-Or (1996) can be improved substantially the
accuracy threshold for quantum computation will not be achievable. Some progress
in this direction has been made recently (Steane 1997). We conclude that the ion-
trap computer is at present incapable of very large-scale computations, so we next
look at some simpler, but equally fundamental and useful problems, which can be
solved by using such realizations.

4. Generalization of entanglement swapping

There are many interesting manipulations of entanglement (though not computa-
tions) that one can do with a limited number of qubits, and as such these are poten-
tially testable applications. An interesting scheme in this category is entanglement
swapping. We first briefly recapitulate the original version of this scheme (Zukowski
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Figure 4. The swapping of entanglement between pairs of particles due to a Bell state measure-
ment on two of them is shown. The bold lines connect particles in Bell states and the dashed
line connects particles on which the Bell state measurement is made.

et al . 1993). Consider an initial state of four particles 1, 2, 3 and 4, in which par-
ticles 1 and 2 are mutually entangled (in a Bell state), and particles 3 and 4 are
mutually entangled (also in a Bell state). If one conducts a measurement of the Bell
operator on particles 2 and 3 (which projects particles 2 and 3 to a Bell state), then
the particles 1 and 4 are also instantaneously projected to one of the Bell states.
Whereas prior to the measurement, the Bell pairs were (1, 2) and (3, 4), after the
measurement the Bell pairs are (2, 3) and (1, 4). A pictorial way of representing the
above process is given in figure 4. It is clear that the most interesting aspect of this
scheme is that particles 1 and 4, which do not share any common past, are entangled
after the swapping.

We have generalized the method of entanglement manipulation described above to
cases where a greater number of particles are involved (Bose et al . 1998). But before
that we need to introduce some notation and terminology. In terms of a binary
variable ui ∈ {0, 1} and its complement uc

i (defined as 1 − ui), one can write down
any Bell state (not normalized) of two particles i and j as

|Ψ(i, j)〉± = |ui, uj〉 ± |uc
i , u

c
j〉. (4.1)

In the above it is understood that |ui〉 and |uc
i 〉 are two orthogonal states of a two-

state system. Then N -particle generalization of Bell states will be states of the type

|ψ〉 =
N∏
i=1

|ui〉 ±
N∏
i=1

|uc
i 〉. (4.2)

For the N = 2 they reduce to the Bell states and for N = 3, 4 they represent the GHZ
states. For a general N we shall call them cat states. We shall show that the original
entanglement swapping scheme can be generalized to the case of starting with cat
states involving any number of particles, doing local measurements by selecting any
number of particles from the different cat states and also ending up with cat states
involving any number of particles. To see that consider an initial state in which
there are N different sets of entangled particles in cat states. Let each of these sets
be labelled by m (where m = 1, 2, . . . , N), the ith particle of the mth set be labelled
by i(m) and the total number of particles in the mth set be nm. Then the initial
state can be represented by

|Ψ〉 =
N∏
m=1

|Ψ〉m, (4.3)
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Figure 5. The conversion of two Bell states and a three-particle GHZ state to a three-particle
GHZ state and a four particle GHZ state due to a GHZ state projection on three particles
(one taken from each of the initially entangled sets) is shown. The bold lines connect mutually
entangled particles and the dashed lines connect particles on which the GHZ state projection is
made.

in which each of the cat states |Ψ〉m is given by

|Ψ〉m =
nm∏
i=1

|ui(m)〉 ±
nm∏
i=1

|uc
i(m)〉, (4.4)

where the symbols ui(m) stand for binary variables ∈ {0, 1} with uc
i(m) = 1− ui(m).

Now imagine that the first pm particles from all the entangled sets are brought
together (i.e. there is a total of p =

∑N
m=1pm particles) and a joint measurement

is performed on all of them. Note that the set of all cat states of p particles forms
a complete orthonormal basis. Let the nature of the measurement on the selected
particles be such that it projects them to this basis. Such a basis will be composed
of states of the type,

|Ψ(p)〉 =
N∏
m=1

pm∏
i=1

|ui(m)〉 ±
N∏
m=1

pm∏
i=1

|uc
i(m)〉. (4.5)

By simply operating with |Ψ(p)〉〈Ψ(p)| on |Ψ〉 of equation (4.3), we find that the rest
of the particles (i.e. those not being measured) are projected to states of the type,∣∣∣∣Ψ( N∑

m=1

nm − p
)〉

=
N∏
m=1

nm∏
i=pm+1

|ui(m)〉 ±
N∏
m=1

nm∏
i=pm+1

|uc
i(m)〉, (4.6)

which represents a cat state of the rest of the particles. In a schematic way the above
process can be represented as

N∏
m=1

|E(nm)〉 → |E(p)〉 ⊗
∣∣∣∣E( N∑

m=1

nm − p
)〉

, (4.7)

where |E(n)〉 denotes an n-particle cat state. As a specific example, in figure 5, we
have shown the conversion of a collection of two Bell states and a three-particle GHZ
state to a three-particle GHZ state and a four-particle GHZ state due to a projection
of three of these particles to a three-particle GHZ state.

As must be evident from figure 5, there is a general ‘pencil and paper’ rule for
finding out the result when our method of entanglement manipulation is applied to
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Figure 6. The configuration used for the distribution of entanglement. Initially users A, B, C
and D share Bell pairs with the central exchange O. Subsequently, a local measurement at O is
sufficient to entangle particles belonging to any subset of users chosen from A, B, C and D.

a certain collection of cat states of particles. One just has to connect the particles
being measured to frame a polygon and those not being measured to frame a com-
plementary polygon. These two polygons represent the two multiparticle cat states
obtained after the manipulation.

This scheme can be used for practical purposes such as constructing a quantum
telephone exchange, speeding up the distribution of entangled particles between two
parties and a sort of series purification (Bose et al . 1998). We describe the first
application in some detail below.

5. Quantum telephone exchange

Suppose there are N users in a communication network. To begin with, each user
of the network needs to share entangled pairs of particles (in a Bell state) with a
central exchange. Consider figure 6: A, B, C and D are users who share the Bell pairs
(1, 2), (3, 4), (5, 6) and (7, 8), respectively, with a central exchange O. Now suppose
that A, B and C wish to share a GHZ triplet. Then a measurement which projects
particles 2, 3 and 5 to GHZ states will have to be performed at O. Immediately,
particles 1, 4 and 6 belonging to A, B and C, respectively, will be reduced to a GHZ
state. In a similar manner one can entangle particles belonging to any N users of the
network and create an N -particle cat state.

The main advantages of using this technique for establishing entanglement over
the simple generation of N -particle entangled states at a source and their subsequent
distribution are as follows.

(1) Each user can at first purify a large number of partially decohered Bell pairs
shared with the central exchange to obtain a smaller number of pure shared Bell
pairs. These can then be used as the starting point for the generation of any types
of multiparticle cat states of the particles possessed by the users. The problems of
decoherence during propagation of the particles can thus be avoided in principle.
Also the necessity of having to purify N -particle cat states can be totally avoided.
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Purification of singlets followed by our scheme will generate N -particle cat states in
their purest form.

(2) Our method allows a certain degree of freedom to entangle particles belonging
to any set of users only if the necessity arises. It may not be known in advance
exactly which set of users will need to share an N -particle cat state. To arrange for all
possibilities in an a priori fashion would require selecting all possible combinations of
users and distributing particles in multiparticle entangled states among them. That
is very uneconomical. On the other hand, generating entangled N -tuplets at the time
of need and supplying them to the users who wish to communicate is definitely time
consuming.

It is pertinent to compare our scheme with the Biham–Huttner–Mor cryptographic
network with exchanges (Biham et al . 1996). There are two main differences: first,
they used a time-reversed Einstein–Podolsky–Rosen scheme for setting up the con-
nections and had quantum memories to protect their states. We use a multiparticle
generalization of entanglement swapping. Secondly, their prime focus was to connect
any pair of users of an N -user network on request, while our main focus is to establish
multiparticle entangled states of the particles possessed by the users. Of course, for
completeness, we must highlight some uses of distributed multiparticle entanglement.
An application that readily comes to mind is multiparty cryptographic conferencing.
We have found another interesting application. When N+1 users in a network share
one particle each from an N + 1-particle cat state, then one of these users can read
messages sent by all the others through a single measurement. This is a multiparticle
generalization of the superdense coding scheme (Bennett & Wiesner 1992). We have
been able to show that though our scheme uses a far less number of particles, the
rate at which a receiver receives information in this scheme is the same as the rate
at which he would receive information if he was separately doing superdense coded
communication with each of the users (Bose et al . 1998).

6. Quantum communication

Having demonstrated how entanglement may be manipulated, we next turn to a
discussion of how it may be used to improve communication channel capacities. But
first we need to quantify how much entanglement we possess within a given state.
We have recently shown how to construct a whole class of measures of entanglement
(Vedral et al . 1997; Vedral & Plenio 1998), and also imposed conditions that any
candidate for such a measure has to satisfy (Vedral et al . 1997). In short, we consider
the disentangled states which form a convex subset of the set of all quantum states.
Entanglement is then defined as a distance (not necessarily in the mathematical
sense) from a given state to this subset of disentangled states. An attractive feature
of our measure is that it is independent of the number of systems and their dimen-
sionality, and is therefore completely general (Vedral et al . 1997; Vedral & Plenio
1998). It should be noted that in much the same way we can quantify the amount of
classical correlation in a state. One would then define another subset, namely that
of all product states which do not contain any classical correlations. Given a disen-
tangled state one would then look for the closest uncorrelated state. The distance
could be interpreted as a measure of classical correlation. Let E(σ) be the amount
of entanglement in a state σ. Then we impose the following physically motivated
conditions.
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(E1) E(σ) = 0 iff σ is separable (disentangled), i.e.

σ =
∑

piσ
i
A ⊗ σiB.

(E2) Local unitary operations leave E(σ) invariant, i.e.

E(σ) = E(UA ⊗ UBσU†A ⊗ U†B).

(E3) The expected entanglement cannot increase under local operations aided with
classical communication, given by

∑
V †i Vi = 1, i.e.∑

tr(σi)E(σi/ tr(σi)) 6 E(σ), (6.1)

where σi = ViσV
†
i .

(E4) E(σ) is continuous.

(E5) E(σ) reduces to the von Neumann entropy for pure states.

(E6) Additivity of E(σ): E(σ1⊗σ2) = E(σ1)+E(σ2), meaning that the entanglement
of two separated entangled pairs is equal to the sum of the entanglement of the
individual pairs.

The only choice that we have found so far satisfying the above is

E(σ) := min
ρ∈D

S(σ||ρ), (6.2)

where S(σ||ρ) = tr(σ lnσ − σ ln ρ) is the quantum relative entropy, and D is the
set of disentangled (separable) states. We call this measure the relative entropy of
entanglement.

What is interesting is that this quantity in addition represents an upper bound
to any purification procedure (see, for example, Bennett et al . 1996). Namely, if
Alice and Bob start with an ensemble of N entangled qubits in a state σ, then the
maximum number of singlets, M , distillable by local operations is governed by the
formula

NE(σ) >M ln 2. (6.3)

This being so, we can easily see that E(σ) provides an upper bound related to
the quantum capacity of certain quantum communication channels. In a quantum
communication protocol Alice receives a quantum system in an unknown state which
she then wishes to transmit to Bob as reliably as possible through a noisy quantum
channel. They might use any quantum resource including entanglement to achieve
this. For example, Alice might create a maximally entangled pair, and send one of
the particles to Bob through the noisy channel. Once they share a number of partly
entangled pairs they can purify them to singlets and then use a teleportation protocol
for perfect transmission. In this case, the rate at which Alice can transmit quantum
information (i.e. the channel capacity) will depend on how efficiently they can purify
and that in turn depends on the entanglement of the shared imperfect pairs. In
this case the capacity would be equal to E(σ). It remains to be seen whether this
is the most efficient way of quantum transmission, and at present the question of
quantifying the quantum channel capacity remains unclear (Lloyd 1997; Schumacher
& Nielsen 1996).
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7. Conclusions

We have studied the impact of spontaneous emission on the practical applicability
of quantum computation in linear ion traps and especially the possibility of using
a quantum computer to factorize large numbers. We conclude that with present
technology such a factorization will not be possible even if we employ sophisticated
methods of quantum error correction. We have shown that the numbers that can be
factorized will be restricted to almost trivial sizes. We then investigated the mini-
mal error rate per quantum gate and compared it to recently established accuracy
thresholds that would, in principle, allow arbitrarily complicated quantum compu-
tations. We find that the presently known thresholds cannot be achieved because
of spontaneous emission alone. Other sources of error would lead to even stronger
limitations. We conclude that new physical ideas are therefore necessary if the goal
of practically useful quantum computation is to be reached. For this reason we have
turned to applications which require only small-scale quantum systems.
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Discussion

B. Christianson (Computer Science Department, University of Hertfordshire, Hat-
field, UK ). Presumably, photon teleportation would allow quantum cryptographic
link-pairs to be connected into a network providing an end-to-end key service with
strong privacy. The switching crossbar consists of a bank of Bell measurement devices
that entangle the correct pairs of photons using routing information provided over
a classical side-channel. The end-points act as if directly connected (except one end
must transform measurements by the rotations notified over the side-channel). The
end-points need not trust the honesty or competence of the teleporting switches,
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which they treat simply as suspected eavesdroppers. The number of link-pairs
required drops from order N2 to order N , but trust is still end-to-end. Of course,
just as with a single quantum link (and just as with classical cryptography), some
conceptually separate mechanism is needed to verify the authenticity/identity of the
actual partner end-point with which they key has been privately shared.

P. L. Knight. I agree with Dr Christian on this privacy aspect to teleported signals,
and with the need for authentification procedures.

B. Josephson (Cavendish Laboratory, University of Cambridge). I am finding these
manipulations one can perform with quantum information fascinating, and was
struck particularly by Professor Knight’s comments concerning ‘coherent manipu-
lation at a distance’. Can there be a connection between these phenomena, and the
much-derided ‘paranormal phenomena’ (examples of the latter being psychokinesis
and extra-sensory perception)? If biosystems have learned to execute the kinds of
subtle manipulation that we scientists are only just beginning to acquire the ability to
perform ourselves (and which organisms may well be able to use with some benefit),
then phenomena of the kind we term paranormal may be the natural consequence.

P. L. Knight. Coherent manipulation of quantum states and teleportation are
highly sensitive to dissipation. Living systems are of course open systems, dependent
on dissipation, and may not be viewed as the closed quantum systems shielded from
decoherence that we are concerned with in quantum information processing. Never-
theless, biological systems can and do use quantum effects (such as energy exchange
in photosynthesis). I do not know of any evidence for quantum coherence in biological
systems of the type discussed here.

Th. Beth (University of Karlsruhe, Germany). Quantum cryptography is not there
to encypher information but rather to provide a secure random key exchange (sim-
ilar to public key exchange). What evidence is there that the decoherence time is
reciprocal to the number of qubits in the system?

P. L. Knight. Of course I agree that quantum cryptography is designed to provide
secure key exchange so that encrypted messages can be sent on public channels. On
the separate question of the dependence of decoherence rates on the reciprocal of the
number of qubits, I note that this has been tested experimentally by the Paris group
of Serge Haroche, who studied the effects of dissipation on cavity field superpositions.
No experiments have been done yet, to my knowledge, on the decoherence rate of
entangled two-state systems.
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